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1. INTRODUCTION

Christaller (1933) postulated a regular hexagonal lattice

3 as his model for the distribution of towns over a homogeneous

w area. This is known as Central Place Theory. This is con-

trasted against the hypothesis that the spatial pattern of

towns in the area is random. A survey on this and related

topics is given by Cliff & Ord (1975) as well as an extensive

bibliography. See also Berry & Pred (1961) and Ripley (1977).

In an ideal situation Central Place Theory would pred ict a

pattern as given in Fig. 1 for 11 central places. As shown,

the region can be covered by hexagons of the same size. We

will require the following definitions.

Key words: Central Places, Delaunay Triangle, Dirichiet Cell,
Miles density, Random pattern, von Mises Distribution.

1Work sup1~orted by tie Air Force Off ke of Scientific Research, AFSC ,
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for any purpose of the United States Government is permitted .

~~~~~~~~~~~



-, 

~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘
~~

— T.L~~~”~~~

—2—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ACCESSION for f
NTIS White SectPon
0CC Buff Section 0
W4j NN OUNCED 0
JUSTIFICATION

BY
UISTRIBUTI~ /AVA ItABILITY CODES

01St. AVA L and/or SPECIAL

FIG. 1

Spatial pattern under Central Place Theory
with 11 towns (~ denotes a town)

(i) Dirichiet Cells (Thiessen Polygons)

Let x x ,...,x be the co-ordinates in R
2 

of n—l -2

central places. The ith Dirichiet cell, f l ( x .), is def ined

such that for all x € fl(x .),

I I x_xi II < IIx_ x j II j ~ i

The boundary of the cell defines the corresponding Thiessen

Polygon and these cells or polygons form a non—overlapp ing

covering of the plane.

(ii) Delaunay Triangles

These arc f ormed by connecting those points whose Theissen
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polygons have a common side. Provided that 4 or more Dirichiet

cells do not meet at any one point, the Delaunay triangul~ition will

also form a non—overlapping covering of the plane. For 4 cells

to have a common vertex, the 4 centres would have to lie at the

vertices of a square or rectangle and since we are in con t inuous

space, this probability can be neglected.

As a numerical example, we examine the data of Gaile & Burt

(1977, • npublished). They consider a map of 44 Central Places in

6 counties in Iowa, namely Unwin, Ringgold , Clarke, Decatur , Lucas

and Wayne Counties. Thiessen polygons were computed and the interior

angles, a1
, a2, a3, of the 63 resulting Delaunay triangles were

obtained. Of course a1
-i- a

2
+ a

3 
1800. Define a

(1) I a
(2 ) S

so that a(1) � a
(2 )  

a(3). Table I gives a(1) 
and

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
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Angle s “ (1) and 
~ (2) for the  sa 1)~~lntinny tr 1u ng h~H f or m e d  f r o m

the 44 (‘~.~ntra1 I’lncos in Iowa . 
~~~ 1

_ ht
2~~~~1t (3 • 

~ ( I )  t (2~~~
t :4) 180

~ ( i )  ti
(2) “ ( 1 )  “ (2 )  n

(1)

78 82 102 108 82 tOO
62 136 54 90 52 5*3
96 106 38 120 68 76
56 78 38 128 72 110
88 100 94 110 88 108

104 104 52 *36 24 100
66 112 52 74 72 118
88 134 HR 92 34 146
42 132 86 134 52 114
‘10 82 62 134 58 78

36 144 38 122 110 138
42 80 36 108 78 132
62 12 4 84 106 62 98
62 140 70 136 34 120
78 80 110 124 44 110

82 118 90 108 48 96
106 122 92 120 80 120
92 112 66 98 96 112

1: 86 114 40 158 62 118
100 122 44 86 112 116
60 112 92 114 96 120

I
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2. RANDOMNESS HYPOTHESIS AND MILES ’ DENSITY

2.1 Miles’ flesult

When Central Place Theory does not hold , the Th iesscn pol yqons

become irregular and the Delaunay triangles follow a more random

pattern. The one procedure is then to generate the points  in the

plane by the homogeneous Poisson process. This process has been

studied in Miles (1970) with the following results.

Let X be a ‘nice domain in R~ e.g. the interior of a circle.

Let q > 0 be a real number and let X(q) be the circle of radius q.

Consider a Poisson process P in R2 of constant parameter p.

and for those points lying in X(q) consider the associated Delaunay

triangulation. A triangle with vertices x1
, x

2
, x

3 can be re-

parameterised in terms of x1
, R, e 1, ~2 ’ e 3, where R is the

circurnradius and e.  is the angle formed between the horizontal

through the centre of the circumcircle, and the line joining x .

to the centre.

Therefore , in the notation of Section 1,

sinQ .
1 

= tsin½ (e2— e1)~ , sina
2 

= ~sin½ (8
3— e 2 ) I .  a1, a2 € (0 , n ) .

Let R and (a1
,a
2
) be asymptotically independent with

g ( R )  = 2(TTp )2R
3 
exp (—TrpR

2), R > 0, p > 0, (2.1)

f(a
11 a2

) = sin a
1 
sin a

2 
sin (~~ + a2 ) ,  a1> 0, a

2
> 0, a

1
i- a2< n , ( 2 . 2 )

and let B C R3 be an open set in (R,a1,a2
) space. Miles ’ result

can be stated as

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Number of DA’ s in x(q) such that (R, a1,a2) B

Number of DL~’s in X(q)

a
:
s

~
S

( R ) f ( a a )d Rda da ( 2 .~~~

where DA stands for a Delaunay triangle.

The convergence is almost sure with respect to the Poisson process

P as q -. • In practice we have a set of data with say N points

in a region X , and we would like to know if those points could be

the realisation of a Poisson process and hence if Miles ’ results are

applicable to the finite situation. It seems plausible that a process

closer to the data would be obtained , if a priori, we condition on

there being N = N points in the region. Of course now the process

is no longer Poisson and it is natural to ask if the asymptotics of

Miles are valid for this conditioned process.

For N � N ,  define a conditioned Poisson process in X(q) of

N points. As N varies these processes are defined on different

probability spaces, so it is not possible to state “ almost sure ’ re-

sults, however , we still have convergence in distribution to (2.3).

2.2 Verification

Miles ’ result says nothing about the distribution of ( c L1., a
2~~

)

i = 1 . . .,n .  We hypothesize that the (a1.,a2 .) are independently

distributed as f(a
1
,a

2
) given by (2.2) for large n. To investi—

gate this density we conducted a simulation of 44 points uniformly
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distributed over the rectangle with sides in the ratio 1:2, which

gave rise to 64 Delaunay triangles. These numerical values corres-

pond as closely as possible to the Iowa da ta .  Th iessen  pol yq ms W( ’F ( ’

constructed using the program of Green and Sibson (I~)77). w ” will

examine this hypothesis in §2.2.1 and *2.2.2 through the (iens~ ty fu1ct1on~ )i

A, which is twice the area, and through the marginal density of the

minimal angles.

2.2.1. Verification through Area

For reasons given later we look into the behaviour of the

distribution of areas of Delaunay triangles of unit radius. The

areas are given by

½ [sin 2a1
+ sin 2Q2~ 

sin 2(a1
+ a~)~ = ½z, a1> 0, a

2
> 0, a

1+ a
2
< ii ( 2 . 4)

The distribution function of A , H(A), from f(a1
,a
2
) given by

(2.2), is found to be

H(A) (3n)
1 

J

U
(s(a) a) sin 2a da

..2(3r1)
1 sin a sin s(a) da,

where

A 2 (2.5)

and
—l sin 2a—As (a) = cos ~max(—1, 2 sin a~

We now test the hypothesis,

H0 : ~~~~~~~~~ 
are independent observations from H(A) given by

(2.5)~
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There will be some form of dependence on the A ’s, but it has

to be seen whether or not this is negligible. ‘rabic ll shows a com-

parison of the distribution of A for the simulated Poisson process

of 44 points with the simulated distribution of A under Miles den-

sity, equation (2.2).

TAttLE U

The dist ribution of A (=2XArea) for a simulated I’ot8son process of

44 points giving rise to 64 Dolaunay triangles (obsorveb ) and for

the simulated values from the Miles distribution g iven by (2.5),

calculated from 10 ,000 simula tIon s

Range Observed Ex pected
of A frequency fr equency

0 .0  —0 .2 1 i . l i — ~
0 .2  -0 .4 1 2 . 25 8 .50
0.4 -0 .6 0 3. 14)
0 .6 -0 .8  4 3.67

1 8.04
0 . 8 — 1 . 0  8 4. 37

1 . 0 - 1 .2  7 5 .10
1 . 2 — 1 . 4  7 5.16
1 . 4 — 1 . 6  9 5 .38
1.6 -1.8 8 6 . 2 3
1 .8 -2.0  3 6 .30

2 .0  -2 .2  2 6 .76
2 . 2 — 2 . 4  7 7.00
2 .4 - 2 . 6  7 7 .44

Using the x2 goodness of fit criterion, it is found that 14.49.

The 5% value of = 16.92 and hence we accept the null hypothesis.

Fur th~~ it is ~~tx~d that for the simulated Poisson process the mean

and the variance are A = 1.53, s~ .3665. It can be shown
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from (2.2) that

2
ii 2 35 u

= E ( A )  = a = var(A) = j -
~ 

— -

~~

— . ( 2 . 6 )

Under the null hypothesis for large n, ~ N(l..t,0
2
/n). rn fact

a
_m
n½ IA - I~L I  = .48 and consequentl y we again accept the null

hypothesis.

2.2.2. Verification through Marginal

Consider the order statistics a
(1). 

ct
( 2 ) . a(3 )  such that

a(1) < a(2)< a
(3) 

and a
(1)

+ a
(2)

+ a(3) 
11. It can easily be shown

that the marginal density of a
(1)

S the minimum angle, becomes

f(a(1)) 
= ( 2 /n ) { (T r  — 3a

(1)
) sin 2a

(1)
+ cos 2a

(1)
— cos 4a(1)~~.

0 < a (1) < 3 . (2.7)

We now test the hypothesis,

H : 0. , . . ., ft are independent observations from (2.7).
o (1)1 (l)n

Using the goodness of fit criterion , 8.18. The 5% point
2for 

~~~~~ 
= 14.07 and so again we accept the null hypothesis.

TABLE III (page 10)

The distribution of the minimum angle, ft
(1) D for a simulated Poisson

process of 44 points giving rise to 64 Delaunay triangles (observed )
and for the expected values for Mile ’s density given by (2.7)

1. _
_ _  _ _t_ —s_~

_ 
— — -~~~~ — —~~~
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Rt.ngc Observed Expected
of CZ

( 1 )  
frequency frequency

o -o
C) - 5 0 .97 m

~0 — 10 1 2.88 8.51
10 — 15 3 4 .~~6 .)
150 

— 200 
8 6 .22

20° — 25° 13 7 .43
C) 0

25 - 3 0  9 8.19
:to~ - 35

0 
9 8.40

O 
- 40° 6 8.02

40 — 4~
° 7 7 . 03

45
( 

- 50° 4 5.19 
~ 10 . 18

50 - 5 5
0 

4 3 .49o 0
55 — 6 0  0 1.20

For the simulated Poisson process 
~(1) ~~~ From ( 2 . 7 ) ,  it

can be shown that

27 2 
~~ 

27 1 27 2
V E(ft~1..) j

~
— = var(a

(1)
) = . — — (

~g~
) . (2.8)

Under H0~ ~(l)~ 
N(V,T2/n) and so we have T

l
n 2Ia _ \)~ = .22 .

Hence we again accept the null hypothesis.

Boots (1974) has suggested using the marg inal distribution of

a random angle from a random Delaunay triangle for verifying whether

the pattern is random. He uses Miles marginal density

f(a) = 4f(rr-a) cosa + sin 0.~ 
Slfl a 

, 0 < a < n , (2.9)

and suggests randomly selecting a sub—sample of triangles and then

choosing one angle at random from within each triangle. This pro-

cedure would of course throw away a substantial part of the

L
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available information.

To reach a firmer conclusion concerning the null hypothesis

extensive simulations are necessary, however on the basis of the

one simulation conducted , we have no grounds to reject 11

3. VON MISES ALTE RNATIVE

For any triangle there is a unique circle , the circumcircle ,

which can be drawn to pass through all three vertices of the tn-

angle. Using this fact, we can view the vertices of a particular

Delaunay triangle to be observations on the circumdisc. We now make

the following assumptions:

(1) Central Place Theory predicts equilateral Delaunay triangles.

We propose to investigate the theory by considering the shape rather

than the size of the triangles. Considering the size of the triangles

to be unimportant, each triangle is scaled so that it is circumscribed

by the unit circle, i.e. R 1.

(11) With the angular observations thus formed , independence

between triangles is assumed. We have already given some justifica-

tion for this assumption in §2.

3.1. The von Mises Model

Consider e 1,e 2 ,e 3 independent von Mises variables with comm on

concentration parameter K , then e . is distributed as M(~.x ., K)

for i=l ,2,,3 and therefore the joint ?.d.f. of 8l~ 
8
2
? 83 is

f(81
,8
2
,8

3) 
= 

3 3 e
K
~~
05(8

1
_ 
~1
)+cos(8

2—~2
)+~~~~93—~3))

( 2 T r ) 1 (K)

K > 0 . (3.1)

If we take ~.i ’ = (0 ,2rm/3 ,4ri/3) it is obvious that as K • ~ , the - 
-

triangles tend to become equilateral and therefore ~( can be regarded

as a measure of the degree of equilaterality.
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3.2. von Mises Arcs

As the model stands, it cannot be directly applied to the prob-

lem as we do not know the individual marg inal observations , only the

angle differences. However the data in Table I can be viewed in terms

of the ‘ arc lengths’ 2O.
1~ 

2a~, 2a3 
on the unit circle. Therefore we

investigate the distribution of these arcs which we denote by

and such that 
~~~ 2 ~3 

2ri, and we can write 
~l

’
~~2

’
~~3 

in

terms of 8
l1 8

2
? 83• 

There are two possibilities.

(i) If 8
118 21 83 

are in anticlockwise order

~l
= (8

2
_ e

1
)mod 2n, 

~2 
(8
3— 

0
2
)mod 2n , 4?~~ (e i

_ 8
3
)mod 2u

or
(ii) if e1,e2,e3 are in clockwise order

~l 
(8

1
W 8

2
)mod 2n, 

~2 
(8
2
_ 0

3
)mod 2rr, ~~~ (83— 81

)mod 2ii.

Consider (3.1). By changing variables from (8l~
8
2~
8
3
) to

(8
2
_ 8

1
)mod 2n, 

~2
’ (83

_ 8
2
)mod 2rr ) and integrating out 8

2
? we

arrive at the joint p.d.f. (degenerate) of 
~l,2

’
~~3 

The p.d .f .  of

( l
,1
2
) is found to be

[(2n)2I
3 (K)]

1
[I 1K [3+2cos (~ 1—~2

+~1
) + 2cos(~~2

—~ 3
+~ 1

)

+ 2cos(~ 3—~
1
1
+~13)f~

)

+ I0
rK[3+2cos (~~1

—p
1
+~2

)+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2n—
~ i

—I
~
, 0< 

2 
2n
~
.
~l

l 0< 2rT  . (3.2)
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For equilateral triangles, we take p.’ = (0 , 2n/3 , 4n / 3 )  and

hence the model becomes

= [(2u)2I~~(~:)J~~~[I0
[K[3+2cos(~~1

_ 
~~)+2cos(~~~— ~~)+2cos (~~

_
~~~) 23

+ I~~ K[3+2cos (~ i
+
~~~

) +2cos 
~~~~ 3~ 

+2cos( + ~1

= 2rr—~~1
--~~2, 0< ~2 

2u
~~ l

I 0< 
~~~ 

2Ti (3.3)

Particular Cases

For K = 0, the density collapses to become

= l/(2rr2), 0< 
~~~ 

2rr —~?
1
, 0< ~~~ 211 (3.4)

which is what one would expect from the construction. For small K

we can approximate the density by expanding the Bessel functions and

ignoring 0(K4) and higher powers of K which gives

= (2u
2
)~~~fl_ 

~~ ~~ 

cos~~.) ,

4
3 

2n_4
l
_$

2~ 
0< 

~~~ 
211_4

l? 0< 
~~~ 

2Tr . (3.5)

For large K , ILL-’ ~~ + where is so small that we can neglect

O(ô~). We have therefore b . 0. Defining Ô = 

~~ 

and

neglecting 0(K
1
) and smaller powers of K , (3.3) becomes
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2rT~/3 
e 

~~~~ 3 
— ~l 3

Hence 
~~~~~~ 

has a bivariate normal distribution with

p.
1 

p.
2
= (2rT)/3, a 2/K and 

~ 
= —1/2. This sante result could

have been found by taking the normal approximation to the von Mises

density in (3.1) and using the fact that the difference of two

normal variables is again normal.

We now investigate the behaviour of the distribution of A and

from this model for varying K . Since the exact form of the

densities is unknown, we turned to simulations of the model. The

method of simulation employed was that of the Rejection Procedure.

For each value of K , 8l1’
82i’83i 

were simulated independently and

the corresponding values of A. and 
~(l)

• were calculated for

i=l,...,l0,000. The results are presented in Tables IV and V (p.15).

Table IV shows the density of A changing from an almost mono-

tonic decreasing function at K 0 , to an almost monotonic increasing

function at K 2.8. Increasing K still further, results in the

density becoming heavily concentrated around equilaterality and

being almost entirely contained in the upper half of the region.

In Table V a similar process is occurring, but here the mode is not

given by the maximum value of

Identification with Miles’ Density

The question arises whether the von Mises density is related to

Miles ’ density for some K . To this end , consider the area of a

particular triangle which is given by

- --~~~~~~ --—- ---— -.- - -- -- . .
--- - -- -—,  -.- -.-- —- ~~~---  --—-- ~~~--- ~~- —-— ,-
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TABLE X V

10,000 simulations of A for the von Mi~~~u model for tit  f L i ~r on t

K = 0 K = 2 .8 K 12of  A

- 

. 0.0 — 0.2 2124 :i~~ 
()

0 .2 — 0~~4 1150 3U4 u
O~ 4 — O a ; 892 u
0 G  — 0 .8 802 372 :i
0 .8 — 1.0 757 464 2

1 .0  — 1.2 61)9 547 8
1. 2 — 1.4 552 612 16
1.4 — 1.6 593 689 43
1 . 6  — 1.8 525 890 146
1.6 — 2 .0 525 1025 382

2 .0 — 2 . 2  502 1283 961
2 . 2  — 2 .4  471 1480 2427
2.4 — 2 .6 408 1647 6012

TABLk V

10 , 000 simu la t Ions  of 
~ (1) for the von M ises model for d i f fe ren t  K

Runge -K 0  K~~~~2 .8 ~~ = 12of

0° - 10~ 1904 426 0
10° 

— 20 1442 424  0
20~ — 30~ 13 18 515 4

— 40” 1126 656 13
40

0 
- 50~ 1082 813 33

50° — 60° 901) 1036 123
60 — 700 

778 1153 382
700 

— 80° 608 1372 huG
80~ — 90° 507 1357 1698
90

0 
— 1000 346 1181 151.4

100~ — 110° 202 788 203 1
1100 

— 1200 
78 279 1416

LLA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _
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Area = ½A ½ ) s i n ( 8 1—8 2
) + s i n ( 8

2 — 8 3 ) + s i n (8 3 —0 1) I ,

0 < 6
l~
8
2~
8
3 

� 2n (3.6

Area has a certain intuitive appeal in that for a given cir-

cumcircle , the triangle with the maximum area is an eq u i l a ter a l

• triangle. The modulus sign makes A awkward for anal ytical pur-
• • poses, so we consider instead A2 which has the same property of

being a maximum for equilateral triangles. Hence we identify
- ~~

• 

- 

E(A2) for both densities and it is found that K , the value of

K corresponding to Miles ’ density, should satisfy

= + ~ A~~( K )  + 3A~ (K
0
)A
2
(K ) + ~A~ (K )  (3.7)

where A (K ) = I (K)/I (K ) .
r o r u o o

The solution of (3.7) gives K 2.20.

We now investigate how close this approximation is in fact.

This is done through the distribution of A and 
~(1) 

for the

Miles ’ density and the von r4ises model. Since the exact forms of

the distributions are not known, except for 
~
‘(1) under Miles

’

density, (2.7), most of the comparison is done through similation.

As before the method employed is the Rejection Procedure. The

results are shown in Figs. 2 and 3. 

- - - - -“~~~~~~~~~~~~~——--- • - - ~~~~- - •
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As the Figures show, the two distributions agree fairly well

for both A and 
~(l)

’ except in the lowest region where the von

• Mises model predicts a much greater number of small trianqic’s.
This particular point is discussed in the next section.

3.4. Appraisal of the von Mises Model

Under the usual circumstances, the test for randomness with the

von Mises density is H : K = 0 V H
1 

K > 0, however this is not

applicable here. If the asymptotic approximations of Miles are
• . valid for n as small as 44, which the simulation described in

Table II would appear to confirm, the test becomes of the form

• H K K  V H  K > K  where K= 2 . 2 0 .o o 1 o o

It has to be strongly emphasized that this approach is not de-

scribed through a spatial process and in that sense, it has to be

admitted that the procedure is ‘ad hoc ’ . For large K the model

has certain good features (e.g. sensible m.l.e .’s) and it is cer-

tainly a viable working alternative, especially, once having re-
jected the hypothesis of randomness. For K = K it can be thought

of as similar to Miles, but for small K , K < K
0
, the density appears

to be meaningless in the spatial content and so can be said to he

non—spatial. This occurs due to the relatively large probability

of colinearity under the von Mises model.

Under the Miles density, equation (2.2), f(a
1
,a

2
) disappears

when the angles are colinear, whereas since 1 (0) = 1, (3.3) is

still equal to a positive constant, and so is bounded away from

zero. As K increases this constant tends to zero, but for K < K

it is quite significant.

In an actual realisation of a spatial process for a moderate
number of points, for the three points of a Delaunay triangle to
be almost colinear , the circumd isc of the triangle would be very
large. The alternative definition of a Delaunay triangle is that

3 points form a Delaunay triangle iff their circumciisc’ is empty, 

~~~~~~~~~~~~ —-~~-- • - - • -~~~~~~~~ .- —--- ~~~~~ -.~~~~~~~~ .---- • •- •-_____
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and so given 3 points practically colinear, by the very definition

of a Delaunay triangle, it is most unlikely that the 3 points would

form such a triangle.

It would be nice if we could arrive at a von Mises type density

through a non—Poisson process, but this does seem to Lx’ out of  our

reach at the present time, if it is indeed at a l l  possiblt’.

4. ESTIMATION FOR THE VON MISES-TYPE MODEL

it is reasonable to assume that the i ’s are known and for

which we take ~i ’ = (0,2rr/3,4ir/3). Consequently we need to estimate

the concentration parameter K . Two methods of estimation are

given.

4.1. Method of Moments

Defining e 1, e 2, 0
3 to be independent von Mises variables with

.1’ (0,2rT/3 ,4n/3) and common concentration parameter K , it is

found, as in (3.7) that

E(A
2
) } + ~-A~ (K) + 3P4(K)A2

(K) + .}A~ (K) , (4.1)

where A .(K) is defined in §3. We take as our estimate of E (A
2),

~ (A
2
) 

~ 

A
2 
, (4.2)

where A19...
,A are the observed areas of the triangles. On

equating (4.1) and (4.2) we can obtain the moment estimate t of K

Unfortunately the equation can only be solved numerically.

Example

From Table I we can calculate (4.2) for the Iowa data, which

gives n 1
~~~ A~ 3.4073. Substituting into (4.2) and solving

numerically, it is found that K = 2.80. 
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4.2. Maximum Likelihood Estimation

• Let 
~~li ’ 

4
2i’ ~

‘3i~ ’ 
i=l,...,n be the observed arc lengths.

From (3.8) it can be easily shown that the maximum like lihood

estimate of K , Q, is given by

A A A
1
1
(K) 

= 

n u .1
1
(Ku.) + v.1

1
(Kv.,) 

(4.3)
A 3~ / A A

i~1 I (Ku.) + I (K v.)

where u. = [3+2cos(41.
_.~LE) + 2cos(4~2.—~~ ) + 2c0S (~~3~~_~~~ ) J 2

and v . = [3+2cos(41.+~~~ )÷ 2cos(~~~,+~~
iE) + 2cos (~ 3 .+~~.i)~~

By the methods of §3.2 we can find approximations to the

- • maximum likelihood equation for small and large values of

For small ~~~, by expanding the Bessel functions and neglecting
A4

O(K ), (4.3) becomes

~2 ~~~ ~~~~~ C~ (4 .4)

- 

where C. cos • ..
31

A
For large K , define

o~~= sn-. ~~~~ = 

~~ 
6~ ., j l ,2,3; i l ,...,n.

Following *3.2, (4.3) then reduces to K = 2/6. But also we have
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A = A. ~~~- (2 - 5). Hence,

K (3 .J3)/ (3 .J3 — 2~ ). (4 5)

A —

Consequently, K depends only on A for large K .

Example

Consider ~~~~.. = 20.., j l ,...,63; i l ,2,3 where the a’s
31

are given in Table I for the Iowa data. Substituting directly

• into (4.3) and solving numerically gives ~
‘ = 2.83, which is in

good agreement with our estimate of K , K = 2.80, given by the

method of moments.
A

Now let us consider the large K approximation. it is found

that A = 1.7105. Substituting this value of A into (4.5)
• gives the m.l.e. of K as 2.93, which is only slightly larger

than = 2.83.

5. ANALYSIS OF THE IOWA DATA

We can now analyze the Iowa data given in Table I.

5.1. Models

We first enquire whether the data could be described by a

von Mises type model with .l ’ (0,2ti/3,4n/3). This we do through

the marginal distribution of A and 4 . We note from § 4 . 2

A (1)
• that the m.l.e. of K is K = 2.8. Tables VI and V11 give a

comparison between the Iowa data and the expected frequencies for

the von Mises K = 2.8 for A and 
~(l)

’ given by 10,000 simu-

lations.
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TABLE VI

Comparison of A for the observed Iowa data and t hose values

expect ed from 10 , 000 s i m u la t ions  for the von M i~~os model w i t h
K = 2 .8 and for - M i l e s ’ densi ty  (E ., )

Range Observed E
1 E 2of A frequencyp 

—~~ -~~—-- ______________ ___________________——-•—-

~~~

- -~~~~~—~~~~~~~ —•

0.0 - 0 . 6 1 6.24 6 . 42
0 .6 — 1.0 7 5.26 7 .93
1.0 - 1.4 14 7.31 1.0.11
1.4 — 1,8 7 9.95 11.44
1 . 8 — 2.2 13 14.54 12 .87
2 . 2  - 2 .6 21 19.70 14 . 23

TAU LK V i i

ComparlRon of values between the observed Iowa data , thoso

value s oxpectud for the von M ises model witi t K = 2.8 (F.
1
) givon

by 10,000 simulat Ion s and those valuos oxpectod for Miles ’
• dons i t.y (59)

• H~*ngo Observed 
— 

E
1 

E
2of 

~(l) 
frequency

O° - 20 ° 0 5.35 3.80
20° - 40° 8 7.37 10.71
40
0 

- 60
0 

14 11.65 15.37
60
0 

— 80
0 

16 15 .90 16.17
80
0 

- 100
0 

18 15.99 12.32
l0O°— 170° 7 6.71 4.62

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~
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Using a goodness of fit test for A and 
~ (1)

’ and

testing against ~~ (5%) 9.49 and X~ (l%) 13.28 in both

cases, it was found for A, = 12.22 and for •(i)’ x2 = ~.13.
Hence we just reject the fit for A at the 5% level , but accept

the fit of the model for

The final columns in TablesVl and VII give the corresponding

frequencies under Miles ’ model from simulation. Applying the

test for Miles ’ density produces the mild ly surprising result Lhat

we would accept the fit of this distribution to the Iowa data.

For A we have 10.46 against x~( 5%) = 11.07 and for

6.87 against ~~
(
~%) = 7.81. The best procedure would have

been to look into the bivariate distribution of (a1
,a
2
), but the

sample size of n 63 is anyhow too small to draw clear—cut

conclusions. However, as we have seen that for K =  2.2 the

von Mises type model is adequate. We will study the problem more

fully from this angle in the next section.

5.2. Central Place Theory

We wish to investigate whether the Delaunay triangles of the

Iowa data can be regarded as having arisen as the result of a

Poisson process in the plane or whether they occurred through the

action of a more regular force. Under the von Mises—type model

of *3, this problem can be looked upon as testing H : K = K

against H1 
K > K where IA ’ = (0,2n/3,4n/3). If A is the

likelihood ratio for the problem, it is found that

—2 log A = 6n log (K /K
1
) + 2~~~ log ([I (K

1
u .) + I (K

1
v .)~~/

[I ( K  u .) + i (K v .)~~)0 0 1  o o i  

—• - • • -•• - -- -~ -
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where K =  2.20, K
1 

2.83 and u . and V . are given by (4.3).

Substituting the values from Table I gives —2 log A 4.08.

= 3.84 and hence we reject K = K at the 5-;;’. Level.

With the evidence before us, there seems justifiable grounds at

the 5% level to suppose that the Iowa data is a result of a pro-

cess that is more regular  than the Poisson and hence there is

some evidence that Central Place Theory holds for this particular

region.
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ABSTRACT
Central Place Theory predicts a regular spatial pattern in

the plane and we observe that the Delaunay triangles will be

equilateral under the theory. However, when the pattern is

‘random ’ , Miles (1970) has given the asymptotic p.d.f. of the

interior angles of a random Delaunay triangle. We propose a

von Mises-type model with a concentration parameter K ;  the

larger the value of K , the closer we are to the Central Place
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Theory. We show that the model can be approximated to the Miles ’

density for some value of K . We provide the moment and maximum
likelihood estimators of K , and it is recognized that the areas

of the Delaunay triangles play an important role. We construct

a test of departure from the random pattern with the alternat ive

of Central Place Theory. As a numerical examp le , we ana l yze 44

Central Places in Iowa where we find some evidence for the valid—

ity of Central Place Theory in that particular region.

• 
- R~ SUM

La Th~orie de la Position Centrale envisage une r~partition

r~guli~re des implantations urbaines dans la plaine. Dans cette

th~orie on s ’attend ~ ce que les triangles de Delaunay de la

r~partition soierit equilateraux. Cependant, quand la repartition

est “au hasard ” , Miles (1970) a donna la distribution asymptotique

pour les angles interieurs d ’un triangle de Delaunay pris au

hasard. On nous propose un mod~ le de von Mises avec Un parametre

de concentration “K” . La validite de la th~orie de la position

centrale augmente avec “K” . On demontre que l’on peut donner une

approximation du mod~ le par la densite de Miles pour uxe valeur
F

donnee de “IC ” . On trouve des evaluations de “ K ”  en utilisant les

moments et l’~~quation du maximum de vraisemblance. L ’ importance

des surfaces des triangles de Delaunay est reconnue , et une

exp~rience entre la “priseau hasard ” et la theorie de la position

centrale est au cours de developement. A titre d ’exemple

numerique, on analyse 44 positions centrales dans l’ iowa o~i l’on

trouve des preuves de la validite de la theorie dans cette region

part iculi~re. 
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